Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $z = \frac{4}{1-i}$, then $\bar{z}$ is (where $\bar{z}$ is complex conjugate of $z$ )

WBJEEWBJEE 2010Complex Numbers and Quadratic Equations

Solution:

$z=\frac{4}{1-i} $
$\Rightarrow z=\frac{4}{1-i} \times \frac{1+i}{1+i}$
$=\frac{4(1+i)}{1^{2}-i^{2}}=2(1+i)$
$\therefore \bar{z}=\frac{2(1-i) \times(1+i)}{1+i}$
$=\frac{4}{1+i}$