Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ z=\sqrt{3}+i, $ then the argument of $ {{z}^{2}}{{e}^{z-i}} $ is equal to

KEAMKEAM 2009

Solution:

Given, $ z=\sqrt{3}+i, $ $ \arg ({{z}^{2}}{{e}^{z-i}})=\arg [(3-1+2\sqrt{3}i){{e}^{\sqrt{3}}}] $
$=\arg [(2+2\sqrt{3}i){{e}^{\sqrt{3}}}] $
$={{\tan }^{-1}}\left[ \frac{2\sqrt{3}}{2} \right] $
$=\frac{\pi }{3} $