Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $|z-2|=\min \{|z-1|,|z-5|\}$, where $z$ is a complex number, then

Complex Numbers and Quadratic Equations

Solution:

$|z-2|=\min \{|z-1|,|z-5|\}$
i.e., $|z-2|=|z-1|$, where $|z-1|<|z-5|$
$\Rightarrow \text{Re}(z)=\frac{3}{2}$ which satisfy $|z-1|<|z-5|$
Also, $|z-2|=|z-5|$, where $|z-5|<|z-1|$
$\Rightarrow \text{Re}(z)=\frac{7}{2}$ which satisfy $|z-5|<|z-1|$