Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ y=\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y+...\infty }}}} $ ,then $ \frac{dy}{dx} $ is equal to

Bihar CECEBihar CECE 2015

Solution:

We have, $ y=\sqrt{x+\sqrt{y+\sqrt{x+\sqrt{y+...\infty }}}} $ $ \Rightarrow $ $ {{y}^{2}}=x+\sqrt{y+\sqrt{x+\sqrt{y+...+\infty }}} $ $ \Rightarrow $ $ {{y}^{2}}=x+\sqrt{y+y} $ $ \Rightarrow $ $ ({{y}^{2}}-{{x}^{2}})=2y $ On differentiating both sides w. r. t . $ x $ , we get $ 2({{y}^{2-x}})\left( 2y\frac{dy}{dx}-1 \right)=2\frac{dy}{dx} $ $ \Rightarrow $ $ 2y({{y}^{2}}-x)\frac{dy}{dx}-\frac{dy}{dx}={{y}^{2}}-x $ $ \Rightarrow $ $ \frac{dy}{dx}(2{{y}^{3}}-2xy-1)=({{y}^{2}}-x) $ $ \Rightarrow $ $ \frac{dy}{dx}=\frac{{{y}^{2}}-x}{(2{{y}^{3}}-2xy-1)} $