Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y=x^{\sin x}+(\sin x)^{x}$ then $\frac{d y}{d x}$ at $x=\frac{\pi}{2}$ is

KCETKCET 2022Continuity and Differentiability

Solution:

$y=x^{\sin x}+(\sin x)^{x}$
$\frac{d y}{d x}=\left[x^{\sin x}\right]\left[\frac{\sin x}{x}+\cos x \cdot \log x\right]+$
$(\sin x)^{x}[x \cos x+\log \sin x]$
$x=\frac{\pi}{2}$
$=\frac{\pi}{2}\left[\frac{2}{\pi}\right]+1[0+0]=1$