Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y =\frac{ x }{\ell n | cx |}$ (where $c$ is an arbitrary constant) is the general solution of the differential equation $\frac{ dy }{ dx }=\frac{ y }{ x }+\phi\left(\frac{ x }{ y }\right)$ then the function $\phi\left(\frac{x}{y}\right)$ is -

Differential Equations

Solution:

$y=\frac{ x }{\ell n | cx |}$
$\frac{ dy }{ dx }=\frac{ y }{ x }+\phi\left(\frac{ x }{ y }\right)$
$\Rightarrow \frac{\ell n | cx |-1}{(\ell n | cx |)^2}=\frac{1}{\ell n | cx |}+\phi\left(\frac{ x }{ y }\right)$
$\Rightarrow \phi\left(\frac{ x }{ y }\right)=\frac{-1}{(\ell n | cx |)^2}=\frac{- y ^2}{ x ^2}$