Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ y=x{{e}^{2y}}, $ then find $\frac{ dy}{dx} $ .

J & K CETJ & K CET 2014Continuity and Differentiability

Solution:

We have $ y=x{{e}^{2y}} $ Taking log on both sides, we get $ \log y=\log (x{{e}^{2y}}) $
$ \Rightarrow $ $ \log y=\log x+2y\log e $
$ \Rightarrow $ $ \log y=\log x+2y $
On differentiating w. r. t. x, we get $ \frac{1}{y}\frac{dy}{dx}=\frac{1}{x}+2\frac{dy}{dx} $
$ \Rightarrow $ $ \frac{dy}{dx}\left( \frac{1}{y}-2 \right)=\frac{1}{x} $
$ \Rightarrow $ $ \frac{dy}{dx}=\frac{1}{x}\times \frac{y}{(1-2y)} $
$ \Rightarrow $ $ \frac{dy}{dx}=\frac{y}{x(1-2y)} $