Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y=(x+1)\left(x^{2}+1\right)\left(x^{4}+1\right)\left(x^{8}+1\right)$, then $\displaystyle\lim _{x \rightarrow-1} \frac{d y}{d x}=$

TS EAMCET 2019

Solution:

We have,
$y=(x+1)\left(x^{2}+1\right)\left(x^{4}+1\right)\left(x^{8}+1\right)$
$\frac{d y}{d x}=\left(x^{2}+1\right)\left(x^{4}+1\right)\left(x^{8}+1\right)+2 x(x+1)\left(x^{4}+1\right)$
$\left(x^{8}+1\right)+4 x^{3}(x+1)\left(x^{2}+1\right)\left(x^{8}+1\right)+8 x^{7}(x+1) \left(x^{2}+1\right)\left(x^{4}+1\right)$
$\left(\frac{d y}{d x}\right)_{x=-1}=(1+1)(1+1)(1+1)+0+0+0=8$