Thank you for reporting, we will resolve it shortly
Q.
If $ y= tan^{-1} \left(\frac{x-a}{1+xa}\right) $ then $ \frac{dy}{dx} = $
J & K CETJ & K CET 2017Continuity and Differentiability
Solution:
We have,
$y=tan^{-1} \left(\frac{x-a}{1+ax}\right)$
$\Rightarrow y=tan^{-1}x-tan^{-1}a $
Differentiating w.r.t. x, we get
$\frac{dy}{dx}=\frac{1}{1+x^{2}}-0$
$=\frac{1}{1+x^{2}}$