Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y =\tan^{-1} \left(\frac{\sin x + \cos x}{\cos x - \sin x}\right) $ , then $\frac{dy}{dx}$ is equal to

KCETKCET 2017Continuity and Differentiability

Solution:

We have,
$y =\tan ^{-1}\left(\frac{\sin x+\cos x}{\cos x-\sin x}\right) $
$=\tan ^{-1}\left(\frac{1+\tan x}{1-\tan x}\right) $
$=\tan ^{-1}\left(\frac{\tan \pi / 4+\tan x}{1-\tan \pi / 4 \tan x}\right)$
$=\tan ^{-1} \tan \left(\frac{\pi}{4}+x\right)=\frac{\pi}{4}+x $
$\frac{d y}{d x} =1$