Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y = \tan^{-1} ( \sec x - \tan x) $, then $ \frac{dy}{dx} = $

COMEDKCOMEDK 2007Continuity and Differentiability

Solution:

$y = \tan^{-1} \left(\sec x-\tan x\right) $

$\Rightarrow \frac{dy}{dx} = \frac{1.\left(\sec x \, \times \, \tan x \,-\, \sec^{2} x\right)}{1+\left(\sec x - \tan x\right)^{2}} $

$= \frac{\sec x \left( \tan x -\sec x \right)}{1+\sec^{2} x + \tan^{2} x-2 \sec x \tan x } $

$= \frac{\sec x \left( \tan x - \sec x \right)}{2 \sec^{2} x - 2 \sec x \tan x}$

$=\frac{\sec x \left(\tan x -\sec x\right)}{-2 \sec x\left(\tan x - \sec x\right)} =\frac{-1}{2}$