Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y = \left(\sin x\right)^{\left(\sin x\right)^{\left(\sin x\right)....\infty}} ,$ then $ \frac{dy}{dx} = $

Limits and Derivatives

Solution:

$y = \left(\sin x\right)^{y} \Rightarrow \log y = y \log\sin x$
$ \Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{dy}{dx} \log\left(\sin x\right) + y \frac{1}{\sin x} . \cos x$
$ \Rightarrow \frac{dy}{dx} \left( \frac{1}{y} - \log\sin x\right) = y \cot x $
$\Rightarrow \frac{dy}{dx} = \frac{y^{2} \cot x }{1 -y \log\sin x} = \frac{y^{2} \cot x}{1-\log y} \left[\because\log y = \log\sin x \right] $