Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y = sin\, x + e^x$, then $\frac{d^{2}\,x}{dy^{2}}$ is equal to

Continuity and Differentiability

Solution:

$y=sin\,x+e^{x}$
$\Rightarrow \frac{dy}{dx}=cos\,x+e^{x}$
$\Rightarrow \frac{dx}{dy}=\frac{1}{cos\,x+e^{x}}$
$\therefore \frac{d^{2}x}{dy^{2}}=-\frac{1}{\left(cos\,x+e^{x}\right)^{2}}\left[-sin\,x+e^{x}\right] \frac{dy}{dy}$
$=-\frac{\left(e^{x}-sin\,x\right)}{\left(cos\,x+e^{x}\right)^{2}}\times\frac{1}{cos\,x+e^{x}}$
$=\frac{sin\,x-e^{x}}{\left(cos\,x+e^{x}\right)^{3}}$