Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y = \sin^2 x \cos^2 x$ , then $y_n = $

Limits and Derivatives

Solution:

$y =\sin^{2} x \cos^{2}x = \frac{1}{4} \left(\sin^{2} 2x\right)$
$ = \frac{1}{4} . \frac{1-\cos4x}{2} = \frac{1}{8} \left(1 - \cos4x\right) $
$= \frac{1}{8} - \frac{1}{8} \cos4x \therefore y_{n} = \frac{1}{8} . 4^{n} \cos\left(4x + \frac{n\pi}{2}\right)$
$= - \frac{1}{8} . 4^{n} \cos\left(4x + \frac{n\pi}{2}\right)$