Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ y={{\sin }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right)+{{\sec }^{-1}}\left( \frac{1+{{x}^{2}}}{1-{{x}^{2}}} \right) $ , then $ \frac{dy}{dx} $ is equal to

Jharkhand CECEJharkhand CECE 2013

Solution:

We have, $ y={{\sin }^{-1}}\left( \frac{2x}{1+{{x}^{2}}} \right)+{{\sec }^{-1}}\left( \frac{1+{{x}^{2}}}{1-{{x}^{2}}} \right) $
Let $ x=\tan \theta $ Then, $ y={{\sin }^{-1}}\left( \frac{2\tan \theta }{1+{{\tan }^{2}}\theta } \right)+{{\sec }^{-1}}\left( \frac{1+{{\tan }^{2}}\theta }{1-{{\tan }^{2}}\theta } \right) $
$ =2\theta +2\theta =4{{\tan }^{-1}}x $
$ \therefore $ $ \frac{dy}{dx}=\frac{4}{1+{{x}^{2}}} $