Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y = \sec\, x^°$, then $\frac{dy}{dx}$ is equal to:

Continuity and Differentiability

Solution:

Let $y = \sec\, x°$
Now ,$x^\circ = \frac{\pi}{180} . x \:\:\: \therefore \: y =\sec \frac{\pi}{180} x$
Now, $\frac{dy}{dx} = \frac{\pi}{180} \sec \frac{x \pi}{180} \tan \frac{\pi}{180} x$
$\Rightarrow \:\: \frac{dy}{dx} =\frac{\pi}{180} \: \sec \, x^\circ . \tan \, x^\circ$