Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y = sec\left(tan^{-1} x\right),$ then $\frac{dy}{dx}$ is equal to

KEAMKEAM 2015Continuity and Differentiability

Solution:

$ y =\sec \left(\tan ^{-1} x\right) $
$ =\sec \left(\sec ^{-1} \sqrt{1+x^{2}}\right) $
$ =\sqrt{1+x^{2}} $
On differentiating both sides w.r.t. $X$, we get
$\frac{d y}{d x}=\frac{1}{2 \sqrt{1+x^{2}}}(2 x)$
$\Rightarrow \frac{d y}{d x}=\frac{x}{\sqrt{1+x^{2}}}$