Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y =\sec^{-1} \left[cosec\, x \right] + cosec^{-1} \left[\sec x\right] +\sin^{-1} \left[\cos x\right]+\cos^{-1} \left[\sin x\right],$ then $ \frac{dy}{dx} $ is equal to

Limits and Derivatives

Solution:

$y = 2 \cos^{-1} \left(\sin x\right) +2 \sin^{-1} \left(\cos x\right)$
$ = 2 \cos^{-1} \cos\left(\frac{\pi}{2} -x\right) + 2 \sin^{-1} \sin\left(\frac{\pi}{2} -x\right)$
$ = \pi -2x + \pi+ 2x = 2 \pi -4x$
$ y' = - 4 $