Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y=log\left[e^{x}\left(\frac{x-1}{x+2}\right)^{1/2}\right]$, then $\frac{dy}{dx}$ equal to

Continuity and Differentiability

Solution:

We have, $y=log\left[e^{x}\left(\frac{x-1}{x+2}\right)^{1/2}\right]$
$=log\,e^{x}+\frac{1}{2}\left[log\left(x-1\right)-log\left(x+2\right)\right]$
$=x+\frac{1}{2}\left[log\left(x-1\right)-log\left(x+2\right)\right]$
$\therefore \frac{dy}{dx}=1+\frac{1}{2}\left[\frac{1}{x-1}-\frac{1}{x+2}\right]$
$=1+\frac{3}{2\left(x-1\right)\left(x+2\right)}$