Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y=\log _{\cot x} \tan x \log _{\tan x} \cot x+\tan ^{-1} \frac{4 x}{4-x^{2}}$ then $\frac{d y}{d x}=$

Continuity and Differentiability

Solution:

$y=1+\tan ^{-1}\left(\frac{x}{1-\left(x^{2} / 4\right)}\right)$
$=1+\tan ^{-1}\left(\frac{2 \cdot(x / 2)}{1-(x / 2)^{2}}\right)$
$=1+2 \tan ^{-1} \frac{x}{2}$
$\frac{d y}{d x}=\frac{4}{4+x^{2}}$