Q.
If $ y = log_{cos \,x} sin\, x $ , then $ \frac{dy}{dx} $ is equal to
Solution:
Given, $y=\log _{\cos x} \sin x=\frac{\log \sin x}{\log \cos x}$
On differentiating w.r.t. x, we get
$\frac{d y}{d x}=\frac{\cot x \cdot \log \cos x+\tan x \cdot \log \sin x}{(\log \cos x)^{2}}$