Q.
If $y$ is a function of $x$ such that $y(x-y)^2=x$.
Statement - I : $\int \frac{d x}{x-3 y}=\frac{1}{2} \log \left[(x-y)^2-1\right]$
Because
Statement - II : $\int \frac{d x}{x-3 y}=\log (x-3 y)+c$.
Integrals
Solution: