Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y = f\left(\frac{2x-1}{x^{2} + 1}\right) $ and $f'\left(x\right) =\sin x^{2} $, then $\frac{dy}{dx} $ is equal to

Limits and Derivatives

Solution:

$ \frac{dy}{dx} = f'\left(z\right) \frac{dz}{dx} \,where \, z = \frac{2x-1}{x^{2} + 1}$
$ = \sin z^{2} . \frac{\left(x^{2} + 1\right)2 - \left(2x -1\right) 2x}{\left(x^{2} + 1\right)^{2}} $
$=\sin\left(\frac{2x-1}{x^{2}+ 1}\right)^{2} . \frac{2+2x-2x^{2}}{\left(x^{2} + 1 \right)^{2}} $