Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y = e-x cos2x then which of the following differential equations is satisfied ?
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $y = e^{-x}\, cos2x$ then which of the following differential equations is satisfied ?
WBJEE
WBJEE 2015
A
$\frac{d^{2}y}{dx^{2}}+2 \frac{dy}{dx}+5y=0$
B
$\frac{d^{2}y}{dx^{2}}+5 \frac{dy}{dx}+2y=0$
C
$\frac{d^{2}y}{dx^{2}}-5 \frac{dy}{dx}-2y=0$
D
$\frac{d^{2}y}{dx^{2}}+2 \frac{dy}{dx}-5y=0$
Solution:
Given, $y=e^{-x} \cos 2 x$ ...(i)
$\therefore \frac{d y}{d x}=e^{-x}(-\sin 2 x) 2+\cos 2 x \cdot e^{-x}(-1)$
$\Rightarrow \frac{d y}{d x}=-2 \sin 2 x \cdot e^{-x}-y$
$\Rightarrow \frac{d y}{d x}+y=-2 \sin 2 x \cdot e^{-x}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}$
$=-2\left[\sin 2 x \cdot e^{-x}(-1)\right.$
$\left.+ e^{-x} 2 \cos 2 x\right]$
$=2 \sin 2 x \cdot e^{-x}-4 y$ [from Eq. (i)]
$\Rightarrow \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=-\frac{d y}{d x}-y-4 y$
$\Rightarrow \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=0$