Given, $y=\frac{A}{x}+B x^{2}$
On differentiating, w.r.t. $x$, we get
$\frac{d y}{d x}=-\frac{A}{x^{2}}+2 B x$
Again differentiating, we get
$ \frac{d^{2} y}{d x^{2}} =+\frac{2 A}{x^{3}}+2 B$
$\therefore x^{2} \frac{d^{2} y}{d x^{2}} =\frac{2 A}{x}+2 B x^{2}$
$=2 y$