Thank you for reporting, we will resolve it shortly
Q.
If $ y = a \log x + bx^2 + x $ has its extremum values at $ x = - 1$ and $ x = 2, $ then
AMUAMU 2015Application of Derivatives
Solution:
We have, $y=a \log x+b x^{2}+x$
$\Rightarrow \frac{d y}{d x}=\frac{a}{x}+2 b x+1$
For extremum, $\frac{d y}{d x}=0$ at $x=-1$ and $x=2$
$\therefore -a-2 b+1=0 $
$\Rightarrow a+2 b=1\,\,\,$...(i)
and $\frac{a}{2}+4 b+1=0 $
$\Rightarrow a+8 b=-2\,\,\,$...(ii)
From Eqs. (i) and (ii), we have
$a=2 \text { and } b=-\frac{1}{2}$