Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y = 8x^3 - 60x^2 + 144x + 27$ is strictly decreasing function in the interval

KEAMKEAM 2016Application of Derivatives

Solution:

Given, $y=8 x^{3}-60 x^{2}+144 x+27$
$\frac{d y}{d x}=24 x^{2}-120 x+144$
For function to be strictly decreasing, $\frac{d y}{d x}<0$
$\Rightarrow 24 x^{2}-120 x+144<0$
$\Rightarrow 24\left(x^{2}-5 x+6\right)<0$
$\Rightarrow \left(x^{2}-5 x+6\right)<0$
$\Rightarrow x^{2}-2 x-3 x+6<0$
$\Rightarrow x(x-2)-3(x-2)<0$
$\Rightarrow (x-3)(x-2)<0$
$\therefore x \in(2,3)$