Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y=4x-5 is a tangent to the curve y2=px3+q at (2, 3), then
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $ y=4x-5 $ is a tangent to the curve $ {{y}^{2}}=p{{x}^{3}}+q $ at (2, 3), then
KEAM
KEAM 2007
A
$ p=2,q=-7 $
B
$ p=-2,q=7 $
C
$ p=-2,q=-7 $
D
$ p=2,q=7 $
E
$ p=0,q=7 $
Solution:
The equation of curve is $ {{y}^{2}}=p{{x}^{3}}+q $
$ \therefore $ $ 2y\frac{dy}{dx}=\frac{3p{{x}^{2}}}{2y} $
$ \Rightarrow $ $ \frac{dy}{dx}=\frac{3p{{x}^{2}}}{2y} $
$ \therefore $ $ {{\left( \frac{dy}{dx} \right)}_{(2,3)}}=\frac{3p{{(2)}^{2}}}{2.3}=2p $
The equation of tangent at (2, 3) is $ (y-3)=2p(x-2) $
$ \Rightarrow $ $ 2px-y=4p-3 $ ...(i)
This is similar to $ y=4x-5 $
$ \therefore $ $ 2p=4 $ and $ 4p-3=5 $
$ \Rightarrow $ $ p=2 $ and $ p=2 $
The point (2, 3) lies on the curve.
$ \therefore $ $ 9=8p+q $
$ \Rightarrow $ $ 9=16+q $ ( $ \because $ $ p=2 $ )
$ \Rightarrow $ $ q=-7 $