The equation of curve is y2=px3+q ∴2ydydx=3px22y ⇒dydx=3px22y ∴(dydx)(2,3)=3p(2)22.3=2p
The equation of tangent at (2, 3) is (y−3)=2p(x−2) ⇒2px−y=4p−3 ...(i)
This is similar to y=4x−5 ∴2p=4 and 4p−3=5 ⇒p=2 and p=2
The point (2, 3) lies on the curve. ∴9=8p+q ⇒9=16+q ( ∵p=2 ) ⇒q=−7