Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y=\frac{3}{4}+\frac{3.5}{4.8}+\frac{3.5 .7}{4.8 .12}+\ldots \ldots \ldots \infty$ then

TS EAMCET 2020

Solution:

$y=\frac{3}{4}+\frac{3 \cdot 5}{4 \cdot 8}+\frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12}+\ldots \infty$
$y+1=1+\frac{3}{4}+\frac{3 \cdot 5}{4 \cdot 8}+\frac{3 \cdot 5 \cdot 7}{4 \cdot 8 \cdot 12}+\ldots \infty$
$=1+\left(\frac{-3}{2}\right)\left(\frac{-1}{2}\right)+\frac{\left(\frac{-3}{2}\right)\left(\frac{-3}{2}-1\right)\left(\frac{-1}{2}\right)^{2}}{2 !}+\frac{\left(\frac{-3}{2}\right)\left(\frac{-3}{2}-1\right)\left(\frac{-3}{2}-2\right)\left(\frac{-1}{2}\right)^{3}}{3 !}+\ldots$
$=\left(1-\frac{1}{2}\right)^{-3 / 2}=\left(\frac{1}{2}\right)^{-3 / 2}=2^{3 / 2}=2 \sqrt{2}$
$\therefore y+1=2 \sqrt{2}$
$\Rightarrow (y+1)^{2}=8$
$\Rightarrow y^{2}+2 y+1=8$
$\Rightarrow y^{2}+2 y-7=0$