Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y = \frac{1}{1+x^{\beta-\alpha} x^{\gamma-\alpha} } + \frac{1}{1+x^{\alpha -\beta} + x^{\gamma-\beta }} + \frac{1}{1+x^{\alpha -\gamma} + x^{\beta-\gamma }}$ then $\frac{dy}{dx} $ is equal to

Limits and Derivatives

Solution:

We have,
$y = \frac{1}{1+\frac{x^{\beta}}{x^{\alpha}} + \frac{x^{\gamma }}{x^{\alpha }}} + \frac{1}{1+\frac{x^{\alpha }}{x^{\beta }} + \frac{x^{\gamma }}{x^{\beta }}} + \frac{1}{1+\frac{x^{\alpha }}{x^{\gamma }} + \frac{x^{\beta }}{x^{\gamma }}}$
$= \frac{x^{\alpha}}{x^{\alpha }+x^{\beta }+x^{\gamma }} + \frac{x^{\beta }}{x^{\alpha }+x^{\beta }+x^{\gamma }}+\frac{x^{\gamma }}{x^{\alpha }+x^{\beta }+x^{\gamma }}$
$= \frac{x^{\alpha }+x^{\beta }+x^{\gamma }}{x^{\alpha }+x^{\beta }+x^{\gamma }} = 1$
$\therefore \frac{dy}{dx} = 0$