Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ y=\left( 1+\frac{1}{x} \right)\left( 1+\frac{2}{x} \right)\left( 1+\frac{3}{x} \right)......\left( 1+\frac{n}{x} \right) $ and $ x\ne 0 $ then $ \frac{dy}{dx} $ when $ x=-1 $ is:

KEAMKEAM 2006

Solution:

$ y=\left( 1+\frac{1}{x} \right)\left( 1+\frac{2}{x} \right)\left( 1+\frac{3}{x} \right)....\left( 1+\frac{n}{x} \right) $ $ \frac{dy}{dx}=\left( -\frac{1}{{{x}^{2}}} \right)\left( 1+\frac{2}{x} \right)\left( 1+\frac{3}{x} \right)....\left( 1+\frac{n}{x} \right)+ $ $ \left( 1+\frac{1}{x} \right)\left( -\frac{2}{{{x}^{2}}} \right)\left( 1+\frac{3}{x} \right).......\left( 1+\frac{n}{x} \right)+ $ $ .....+\left( 1+\frac{1}{x} \right)\left( 1+\frac{2}{x} \right)\left( 1+\frac{3}{x} \right).....\left( -\frac{n}{{{x}^{2}}} \right) $ $ \therefore $ $ {{\left. \frac{dy}{dx} \right|}_{x=-1}}=(-1)(-1)(-2)(-3).....(1-n) $ $ ={{(-1)}^{n}}(1)(2)(3)....(n-1) $ $ ={{(-1)}^{n}}(n-1)! $