Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ xy=x+y, $ then $ \left( \frac{dy}{dx} \right) $ is equal to:

KEAMKEAM 2000

Solution:

$ xy=x+y\Rightarrow xy-y=x $ $ \Rightarrow $ $ y(x-1)=x $ $ \Rightarrow $ $ yx=x+y $ On differentiating w.r.t. $ x, $ we get $ x\frac{dy}{dx}+y=1+\frac{dy}{dx} $ $ \Rightarrow $ $ \frac{dy}{dx}(x-1)=1-y $ $ \Rightarrow $ $ \frac{dy}{dx}=\frac{1-y}{x-1}=\frac{1-\frac{x}{x-1}}{x-1} $ $ =\frac{x-1-x}{{{(x-1)}^{2}}}=\frac{-1}{{{(x-1)}^{2}}} $