Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\frac{xdy}{dx}+\frac{y^{2}}{x}=y$, then

Differential Equations

Solution:

$\frac{dy}{dx}=\frac{xy-y^2}{x^2}$
Substitute $y=vx $
$\Rightarrow \frac{dy}{dx}=\frac{xdv}{dx}+v$
Now, given equation becomes
$\frac{xdv}{dx}+v=v-v^{2}$
$\Rightarrow \frac{xdv}{dx}=-v^{2}$
$\Rightarrow -\frac{dv}{v^{2}}=\frac{dx}{x}$
$\Rightarrow \frac{1}{v}=ln\,x+ln\,c$
$\Rightarrow \frac{x}{y}=ln\,cx$
$\Rightarrow e^{\frac{x}{y}}=cx$.