Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x y z are not equal and ≠ 0, ≠ 1 the value of | log x& log y& log z log 2x& log 2y& log 2z log 3x& log 3y& log 3z| is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $x y z$ are not equal and $\neq 0, \neq 1 $ the value of $\begin{vmatrix} \log x& \log y& \log z\\ \log 2x& \log 2y& \log 2z\\ \log 3x& \log 3y& \log 3z\end{vmatrix}$ is equal to
KCET
KCET 2016
Determinants
A
$\log(xyz)$
15%
B
$\log(6 xyz)$
21%
C
$0$
48%
D
$\log(x + y + z)$
16%
Solution:
We have $\begin{vmatrix}\log x&\log y&\log z\\ \log 2x& \log2y&\log2z\\ \log3x&\log 3y&\log3z\end{vmatrix}$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$,
$ = \begin{vmatrix}\log x&\log y&\log z\\ \log 2+\log x&\log 2+\log y&\log 3+\log z \\ \log 3 + \log x&\log 3+\log y&\log 3+\log z\end{vmatrix}$
$=\log \,2 \cdot \log \,3\begin{vmatrix} \log x & \log y & \log z \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{vmatrix}$
$= 0$
$\left[\because R_{2}\right.$ and $R_{3}$ are same]