Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x, y, z$ are in $A.P$, then $\frac{\sin x-\sin z}{\cos z-\cos x}$ is equal to

Trigonometric Functions

Solution:

$\frac{\sin x-\sin z}{\cos z-\cos x}=\frac{2 \cos \left(\frac{x+z}{2}\right) \sin \left(\frac{x-z}{ z}\right)}{2 \sin \left(\frac{x+z}{z}\right) \sin \left(\frac{x-z}{ z}\right)}$
$=\cot \left(\frac{x+z}{2}\right)=\cot (y)$