Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x, y \in(0,30)$ such that
$\left[\frac{x}{3}\right]+\left[\frac{3 x}{2}\right]+\left[\frac{y}{2}\right]+\left[\frac{3 y}{4}\right]=\frac{11}{6} x+\frac{5}{4} y$
(where $[x]$ denotes greatest integer $\leq x$ ), then number of ordered pairs $(x, y)$ is

Permutations and Combinations

Solution:

Let $\{x\}=x-[x]$ denote the fractional part of $x$. Note that $0 \leq\{x\}<1$. We can write the given equation as
$\frac{x}{3}-\left\{\frac{x}{3}\right\}+\frac{3 x}{2}-\left\{\frac{3 x}{2}\right\}+\frac{y}{2}-\left\{\frac{y}{2}\right\}+\frac{3 y}{4}-\left\{\frac{3 y}{4}\right\}=\frac{11}{6} x+\frac{5}{4} y $
$\Rightarrow \left\{\frac{x}{3}\right\}+\left\{\frac{3 x}{2}\right\}+\left\{\frac{y}{2}\right\}+\left\{\frac{3 y}{4}\right\}=0$
As each number on the L.H.S. lies in the interval $0 \leq x<1$, we must have
$\left\{\frac{x}{3}\right\}=\left\{\frac{3 x}{2}\right\}=\left\{\frac{y}{2}\right\}=\left\{\frac{3 y}{4}\right\}=0$
$\Rightarrow \frac{x}{3}, \frac{3 x}{2}, \frac{y}{2}$ and $\frac{3 y}{4}$ must be integers.
$\therefore x=6,12,18,24, y=4,8,12,16,20,24,28$
$\Rightarrow$ Number of ordered pairs $(x, y)$ equals $4 \times 7=28$.