Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x^{y}=e^{x-y}$, then $\frac{d y}{d x}$ is equal to

ManipalManipal 2010

Solution:

We have, $x^{y}=e^{x-y}$
$\Rightarrow y \log x=(x-y) \log e=x-y$
$\Rightarrow y=\frac{x}{1+\log x}$
$\Rightarrow \frac{d y}{d x}=\frac{(1+\log x) \cdot 1-x \cdot \frac{1}{x}}{(1+\log x)^{2}}=\frac{\log x}{(1+\log x)^{2}}$