Q. If $x, \, y$ and $z$ are the roots of the equation $2t^{3}-\left(tan \left[x + y + z\right] \pi \right)t^{2}-111t+2020=0,$ then $\begin{vmatrix} x & y & z \\ y & z & x \\ z & x & y \end{vmatrix}$ is equal to (where, $\left[x\right]$ denotes the greatest integral value less than or equal to $x$ )
NTA AbhyasNTA Abhyas 2020Matrices
Solution: