Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x, y$ and $z$ are in AP and $tan^{-1}x, tan^{-1} y$ and $tan^{-1} z $ are also in $AP$, then

JEE MainJEE Main 2013Inverse Trigonometric Functions

Solution:

Since, x , y and z are in an AP.
$\therefore \, \, \, \, \, \, \, \, \, \, \, \, \, 2y=x+z$
Also, $tan^{-1} x , tan^{-1} y \, and \, tan^{-1} z$ are in an AP.
$\therefore \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, 2tan^{-1} y =tan^{-1} x+tan^{-1} (z) $
$\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, tan^{-1}\bigg(\frac{2y}{1-y^2}\bigg) = tan^{-1}\bigg(\frac{x+z}{1-xz}\bigg)$
$\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \frac{x+z}{1-y^2}=\frac{x+z}{1-xz}$
$\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, y^2=xz$
Since x, y and z are in an AP a s well as in a GP.
$\therefore \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, x=y=z$