Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x^x = y^y$ then $\frac {dy} {dx}$ is

KCETKCET 2007Continuity and Differentiability

Solution:

Given, $x^x = y^y$
Taking log on both sides, we get
$x \,\log \,x = y\,\log \, y$
Differentiating w.r.t. y, we get
$y . \frac{1}{y} . \frac{dy}{dx} + \log y$
$ \frac{dy}{dx} =x \frac{1}{x} + \log x $
$ \Rightarrow \frac{dy}{dx} \left(1+ \log y\right)$
$ = 1 + \log x$
$ \Rightarrow \frac{dy}{dx} = \frac{1+\log x}{1+ \log y} $