Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x=x0 is solution of the equation (2 x) log 5 2-(3 x) log 5 3=0, then the value of (x0+(1/x0)) is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $x=x_0$ is solution of the equation $(2 x)^{\log _5 2}-(3 x)^{\log _5 3}=0$, then the value of $\left(x_0+\frac{1}{x_0}\right)$ is equal to
Continuity and Differentiability
A
$\frac{37}{6}$
B
$\frac{\log _5 2+\log _5 3}{\log _5 3-\log _5 2}$
C
$\log _2 3$
D
2
Solution:
We have $(2 x)^{\log _5 2}-(3 x)^{\log _5 3}$
$\therefore \text { Taking logarithm to the base } 5 \text { on both sides, we get } $
$ \left(\log _5 2\right) \cdot\left(\log _5 2+\log _5 x \right)=\left(\log _5 3\right) \cdot\left(\log _5 3+\log _5 x \right)$
$\Rightarrow -\left(\log _5 3-\log _5 2\right) \cdot \log _5 x =\left(\log _5 3-\log _5 2\right) \cdot\left(\log _5 3+\log _5 2\right) $
$\Rightarrow \log _5\left(\frac{1}{ x }\right)=\log _5 6 \Rightarrow x =\frac{1}{6} \equiv x _0 \text { (Given) }$
Hence, $\left(x_0+\frac{1}{x_0}\right)=\frac{37}{6}$.