Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x= tan 15°, y= operatornamecosec 75° and z=4 sin 18°, then :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $x=\tan 15^{\circ}, y=\operatorname{cosec} 75^{\circ}$ and $z=4 \sin 18^{\circ}$, then :
EAMCET
EAMCET 2006
A
x < y < z
B
y < z < x
C
z < x < y
D
x < z < y
Solution:
$\because x =\tan 15^{\circ}=\tan \left(45^{\circ}-30^{\circ}\right) $
$=\frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \tan 30^{\circ}}=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}} $
$=\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{(\sqrt{3}-1)^{2}}{3-1} $
$=\frac{3+1-2 \sqrt{3}}{2}=2-\sqrt{3} $
and $y =\text{cosec} \,75^{\circ} $
$=\frac{1}{\sin \left(45^{\circ}+30^{\circ}\right)} $
$=\frac{1}{\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}} $
$=\frac{1}{\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}}=\frac{2 \sqrt{2}}{\sqrt{3}+1} \times \frac{\sqrt{3}-1}{\sqrt{3}-1} $
$=\frac{2 \sqrt{2}(\sqrt{3}-1)}{3-1}=\sqrt{6}-\sqrt{2}$
and $z=4 \sin 18^{\circ}=4\left(\frac{\sqrt{5}-1}{4}\right)=\sqrt{5}-1$
It is clear from above that
$(2-\sqrt{3})<(\sqrt{6}-\sqrt{2})<(\sqrt{5}-1)$
$\Rightarrow x < y < z$