Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x = sin t and y = sin pt, then the value of (1-x2) (d2y/dx2) -x (dy/dx)+p2y is equal to :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $x = \sin t$ and $y = \sin pt$, then the value of $\left(1-x^{2}\right) \frac{d^{2}y}{dx^{2}} -x \frac{dy}{dx}+p^{2}y $ is equal to :
Continuity and Differentiability
A
0
28%
B
1
33%
C
-1
21%
D
$ \sqrt{2}$
18%
Solution:
Let $x = \sin\: t$ and $y = \sin\: pt$ ...(1)
Differentiate both sides w.r.t 't'
$\therefore \:\: \frac{dx}{dt} = \cos t$ and $\frac{dy}{dt} = p \cos pt $
$\therefore \:\:\: \frac{dy}{dx} =\frac{dy}{dt} \times\frac{dt}{dx}= \frac{p \cos pt}{\cos t} $
$= \frac{p\sqrt{1 -\sin^{2} pt}}{\sqrt{1-\sin^{2} t}} \left( \because \:\: \sin^{2} \theta +\cos^{2} \theta =1\right)$
$ \Rightarrow \frac{dy}{dx} =p \frac{\sqrt{\left(1 -y^{2}\right)}}{\sqrt{\left(1-x^{2}\right)}} $ (from (1))
On squaring both sides, we get
$\left(\frac{dy}{dx}\right)^{2} =p^{2} \frac{\left(1 -y^{2}\right)}{\left(1 -x^{2}\right)}$
$ \Rightarrow \left(\frac{dy}{dx}\right)^{2} \left(1-x^{2}\right)=p^{2} \left(1-y^{2}\right)$
Differentiating this equation, we get
$2\left(\frac{dy}{dx}\right)\left(\frac{d^{2}y}{dx^{2}}\right)\left(1-x^{2}\right)+\left(\frac{dy}{dx}\right)^{2}\left(-2x\right) =p^{2}\left(-2y\right) \frac{dy}{dx}$
Cancelled out 2. $\frac{dy}{dx}$ on both the sides,
$\left(1-x^{2}\right) \frac{d^{2}y}{dx} -x \frac{dy}{dx} +p^{2}y =0$