Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x=sin\left(2 t a n^{- 1} 3\right)$ and $y=sin\left(\frac{1}{2} \left(tan\right)^{- 1} \frac{4}{3}\right),$ then

NTA AbhyasNTA Abhyas 2020Inverse Trigonometric Functions

Solution:

Let, $x=sin 2\theta $ (where $tan \theta =3$ )
$\Rightarrow x=\frac{2 tan \theta }{1 + t a n^{2} \theta }=\frac{6}{1 + 9}=\frac{3}{5}$
If $\alpha =tan^{- 1}\frac{4}{3}$
$\Rightarrow y=sin\left(\frac{\alpha }{2}\right)=\frac{1}{\sqrt{2}}\sqrt{1 - cos \alpha }$
$=\frac{1}{\sqrt{2}}\sqrt{1 - \frac{3}{5}}=\frac{1}{\sqrt{5}}$
$\therefore y^{2}=\frac{1}{5}\Rightarrow y^{2}=2x-1$