Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ x $ satisfies $ {{x}^{2}}-2x\text{ }cos\theta +1=0, $ then the value of $ \left( {{x}^{n}}+\frac{1}{{{x}^{n}}} \right) $ is:

KEAMKEAM 2000

Solution:

$ {{x}^{2}}-2x\cos \theta +1=0 $ $ \Rightarrow $ $ x=\frac{2\cos \theta \pm \sqrt{4{{\cos }^{2}}\theta -4}}{2} $ $ x=\cos \theta \pm i\sin \theta $ Take $ + $ sign, $ x=\cos \theta +i\sin \theta $ $ \Rightarrow $ $ {{x}^{n}}=\cos n\theta +i\sin n\theta $ $ \therefore $ $ {{x}^{n}}+\frac{1}{{{x}^{n}}}=\cos n\theta +i\sin n\theta +\cos n\theta -i\sin n\theta $ $ =2\cos n\theta $