Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x$ satisfies the inequality $\left(\tan ^{-1} x\right)^{2}+3\left(\tan ^{-1} x\right)-4>0,$ then the complete set of values of $x$ is

NTA AbhyasNTA Abhyas 2020Inverse Trigonometric Functions

Solution:

Let, $\tan ^{-1} x=t$
the given inequality becomes $t^{2}+3 t-4>0 \Rightarrow (t+4)(t-1)>0$
$\therefore t<-4$ or $t>1$
$\tan ^{-1} x<-4$ (not possible) or $\tan ^{-1} x>1$
$\Rightarrow x>\tan 1$