Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x \neq 0$, then $\frac{\sin (\pi+x) \cos \left(\frac{\pi}{2}+x\right) \tan \left(\frac{3 \pi}{2}-x\right) \cot (2 \pi-x)}{\sin (2 \pi-x) \cos (2 \pi+x) \text{cosec}(-x) \sin \left(\frac{3 \pi {2}+x\right)}=$

AP EAMCETAP EAMCET 2020

Solution:

$\sin (\pi+x) \cos \left(\frac{\pi}{2}+x\right) \tan \left(\frac{3 \pi}{2}-x\right) \cot (2 \pi-x)$
$\sin (2 \pi-x) \cos (2 \pi+x) \text{cosec}(-x) \sin \left(\frac{3 \pi}{2}+x\right)$
$=x \neq 0$
$\sin (\pi+x) \cos \left(\frac{\pi}{2}+x\right) \tan \left(\frac{3 \pi}{2}-x\right) \cot (2 \pi-x)$
$\sin (2 \pi-x) \cos (2 \pi+x) \text{cosec}(-x) \sin \left(\frac{3 \pi}{2}+x\right)$