Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ x^{m}y^{n}=(x+y)^{m+n} $ , then $ \frac{d y}{d x} $ is

UPSEEUPSEE 2008

Solution:

Given, $x^{m} y^{n}=(x+y)^{m+n}$
Taking log on both sides, we get $m \log x+n \log y=(m+n) \log (x+y)$
On differentiating wrt $x$, we get,
$\frac{d y}{d x}=\frac{y}{x}$