Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x+iy=\left(1-i\sqrt{3}\right)^{100}$, then find $\left(x, y\right).$

VITEEEVITEEE 2011

Solution:

$\left(1-i\sqrt{3}\right)^{100}=2^{100}\left(-\frac{1}{2}+\frac{i\sqrt{2}}{2}\right)^{100}$
$=2^{100}\,\omega^{100}$
$=2^{100}\,\omega$
$=2^{100}\left(-\frac{1}{2}+\frac{\sqrt{3}i}{2}\right)$
$=-2^{99}+2^{99}\,\sqrt{3}i$
Now, $x+iy=\left(1-i\sqrt{3}\right)^{100}$
$=-2^{99}+2^{99}\,\sqrt{3}i$
$\Rightarrow x=-2^{99}, y=2^{99}\,\sqrt{3}$
$\therefore \left(x, y\right)=\left(-2^{99}, -2^{99}\,\sqrt{3}\right)$