Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $X$ is a Poisson variate such that $P ( X =1)= P ( X =2)$, then $P ( X =4)$ is equal to

Probability - Part 2

Solution:

Given that, $P(X-1) = P(X=2)$
$\frac{e^{-\lambda} \lambda^{1}}{1 !}=\frac{e^{-\lambda} \lambda^{2}}{2 !} \Rightarrow \lambda=2$
$\therefore P(X=4)=\frac{e^{-2}(2)^{4}}{4 !}=\frac{e^{-2} \times 16}{24}=\frac{2}{3 e^{2}}$